Regression Analysis Using GIS

By Jennie Murack
murack@mit.edu
Regression Basics
How is Regression Different from other Spatial Statistical Analyses?

- With other tools you ask **WHERE** something is happening?
 - Are there places in the United States where people are persistently dying young?
 - Where are the hot spots for crime, 911 emergency calls, or fires?
 - Where do we find a higher than expected proportion of traffic accidents in a city?
With Regression Analyses, you ask **WHY** something is happening.

- Why are there places in the United States where people persistently die young? What might be causing this?
- Can we model the characteristics of places that experience a lot of crime, 911 calls, or fire events to help reduce these incidents?
- What are the factors contributing to higher than expected traffic accidents? Are there policy implications or mitigating actions that might reduce traffic accidents across the city and/or in particular high accident areas?
Regression analysis allows you to...

- Model, examine, and explore spatial relationships
- Predict

Coefficients for percent rural and low-weight births

T-scores show where this relationship is significant
Reasons to Use Regression Analysis

- To model phenomenon in order to better understand it and possibly make decisions
- To model phenomenon to predict values at other places or times
- To explore hypotheses
Regression Models
Spatial Regression

- Spatial data often do not fit traditional, non-spatial regression requirements because they are:
 - spatially autocorrelated (features near each other are more similar than those further away)
 - nonstationary (features behave differently based on their location/regional variation)
- No spatial regression method is effective for both characteristics.
Linear Regression

- Used to analyze linear relationships among variables.
- Linear relationships are positive or negative.
- Regression analyses attempt to demonstrate the degree to which one or more variables potentially promote positive or negative change in another variable.
Y = variable you are trying to predict or understand
X = value of the dependent variables
\(\beta \) = coefficients computed by the regression tool, represent the strength and type of relationship X has to Y
Residuals = the unexplained portion of the dependent variable
- large residuals = a poor model fit
Residuals

Difference between the observed and predicted values
Ordinary Least Squares Regression

- Best known technique and a good starting point for all spatial regression analyses.
- Global model = provides 1 equation to represent the entire dataset
- Available in Geoda and ArcMap
Geographically Weighted Regression (GWR) (ArcMap)

- Provides a local model of the variable by fitting a regression equation to every feature in the dataset.
- The equations incorporate the dependent and explanatory variables of features falling within the bandwidth of each target feature.
Spatial Lag Model (Geoda)

- Includes a spatially lagged dependent variable:
 \[y = (\rho)Wy + X(\beta) + \varepsilon \]
 - \(Wy \) = spatially lagged dependent variable for weights matrix \(W \)
 - \(X \) = matrix of observations on the explanatory variable
 - \(\varepsilon \) = vector of error terms
 - \(\rho \) and \(\beta \) are parameters

- A spatial lag is a variable that averages the neighboring values of a location.

- Accounts for autocorrelation in the model with the weights matrix
 - \(y \) is dependent on its neighbors (through the weights matrix)
Spatial Error Model (Geoda)

- Includes a spatial autoregressive error term:
 \[y = X(\beta) + \varepsilon, \quad \varepsilon = \lambda(W) \varepsilon + u \]
 - \(W \) is the spatial weights matrix
 - \(X \) is a matrix of observations on the explanatory variables
 - \(\varepsilon \) is a vector of spatially autocorrelated error terms
 - \(u \) is a vector of i.i.d. (independent identically distributed) errors
 - \(\lambda \) and \(\beta \) are parameters.

- Similar to spatial lag model: accounts for autocorrelation in the error with the weights matrix.
Interpreting Results
Summary Statistics

- Mean/Standard Deviation
- Number of observations
- Dependent Variable
Measure of Regression Fit

- R^2
 - How well the regression line fits the data
 - The proportion of variability in the dataset that is accounted for by the regression equation.
 - Ranges from 0 to 1
 - Outliers or non-linear data could decrease R^2.
Data Outliers

Solutions:

- Run regression with and without outliers to see their effect on the analysis.

- Create a scatter plot to examine extreme values and correct or remove outliers if possible.
Nonlinear Relationships

Solutions:

- Create a scatter plot matrix graph and transform variables
- Use a non-linear regression model
Variable Coefficients

- The sign shows whether the relationship is positive or negative.
- The coefficient shows the strength of the relationship.
- P-values indicate whether the variable is a significant predictor of the independent variable.
- Use the coefficients to form a regression equation: $y = 10 + .5a - 6b + 8c$
- Remove variables with high p-values to see if R^2 increases.
Comparability

- Use Akaike information Criterion (AICc) value when comparing models.
- AICc is a measure of the relative goodness of fit of a statistical model.
- It assists with model selection, but does not test the null hypothesis.
- A lower AICc value means the model is a better fit for the data.
Multicollinearity

- Two or more variables may be highly correlated with one another
- Variance Inflation Factor (VIF)
 - Larger than 7.5 could indicate redundancy among variables.
- Multicollinearity Condition Number
 - Values over 30 indicate a problem
Tests for Residuals/Errors

- **Jarque-Bera Test**: Tests the normality of errors. If it is significant, you may be missing an explanatory variable.
- **Breusch-Pagan, Koenker-Bassett, White**: Test for heteroskedasticity (non-constant variance). If these are significant, the relationships between some or all of the explanatory variables and the dependent variable are non-stationary (a strong predictor in one area, but weak in others). Try other regression models (GWR, etc.)
- **Spatial Autocorrelation**: Autocorrelated residuals could indicate missing variables or the need for alternative regression models.
Normal Distribution Bias

Solutions:

- Jarque-Bera tests whether residuals are normally distributed.
- Model may be misspecified or nonlinear.
Spatially autocorrelated residuals

Solutions:

- Run the spatial autocorrelation tool on the residuals.
- If there is significant clustering, there could be misspecification (a variable is missing from the model).
Plotting Residuals

- Residuals vs. ID (or any unique identifier)
 - Should not display any pattern
 - Examine large residuals and look for systematic relationships to improve upon the model
- Residuals vs. Predicted
 - Detects heteroskedasticity, or unequal variances
 - Funnel-like patterns indicate relationships between the residuals and predicted values
Heteroskedasticity

- If heteroskedasticity exists, variability differs across sub-populations.
- Variables could be strong predictors in some areas, but weak predictors in others.
Maps

- Predicted Value Map
 - The value of the dependent variable, based on the regression equation
 - A smoothed map
 - Random variability, due to factors other than those included in the model, have been smoothed out

- Residual Map
 - Indicates systematic over or under prediction in regions, which could be evidence of spatial autocorrelation
Summary
Steps of Regression

- Determine what you are trying to predict or examine (dependent variable)
- Identify key explanatory variables
- Examine the distribution to determine the type of regression to conduct
- Run the regression
- Examine the coefficients
- Examine the residuals
 - The mean should equal 0.
 - They should create a random pattern.
 - They should create a normal distribution.
 - Problems could indicate missing variables.
- Remove or add variables and repeat regression
- Use another regression model if necessary.
Resources
Regression Resources

- ESRI Spatial Statistics Website:

- Geoda Workbook:

- ESRI Regression Tool Help:

- Video lecture on Spatial Lag and Error:
 https://geodacenter.asu.edu/spatial-lag-and
Survey

- Access our workshop survey at the following site: http://libguides.mit.edu/gisworkshops

- Click on Survey in the Regression box on the left side of the page.